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Abstract

Support vector machines (SVM) were originally designed for binary classification. How
to effectively extend it for multi-class classification is still an on-going research issue. Several
methods have been proposed where typically we construct a multi-class classifier by combining
several binary classifiers. Some authors also proposed methods that consider all classes at
once. As it is computationally more expensive to solve multi-class problems, comparisons of
these methods using large-scale problems have not been seriously conducted. Especially for
methods solving multi-class SVM in one step, a much larger optimization problem is required
so up to now experiments are limited to small data sets. In this paper we give decomposition
implementations for two such “all-together” methods: [25], [27] and [7]. We then compare
their performance with three methods based on binary classifications: “one-against-all,” “one-
against-one,” and DAGSVM [23]. Our experiments indicate that the “one-against-one” and
DAG methods are more suitable for practical use than the other methods. Results also show
that for large problems methods by considering all data at once in general need fewer support

vectors.
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I. INTRODUCTION

Support Vector Machines (SVM) [6] were originally designed for binary classifi-
cation. How to effectively extend it for multi-class classification is still an on-going
research issue. Currently there are two types of approaches for multi-class SVM.
One is by constructing and combining several binary classifiers while the other is
by directly considering all data in one optimization formulation. Up to now there
are still no comparisons which cover most of these methods.

The formulation to solve multi-class SVM problems in one step has variables

proportional to the number of classes. Therefore, for multi-class SVM methods,



either several binary classifiers have to be constructed or a larger optimization
problem is needed. Hence in general it is computationally more expensive to solve
a multi-class problem than a binary problem with the same number of data. Up
to now experiments are limited to small data sets. In this paper we will give
a decomposition implementation for two such “all-together” methods: [25], [27]
and [7]. We then compare their performance with three methods based on binary
classification: “one-against-all,” “one-against-one,” and DAGSVM [23].

Note that it was pointed out in [11] that the primal forms proposed in [25], [27]
are also equivalent to those in [3], [11]. Besides methods mentioned above, there
are other implementations for multi-class SVM. For example, [14], [19]. However,
due to the limit of space here we do not conduct experiments on them. An earlier
comparison between one-against-one and one-against-all methods is in [5].

In Section II, we review one-against-all, one-against-one, and DAGSVM meth-
ods which are based on solving several binary classifications. In Section III, we
give a brief introduction to the method in [25], [27] which considers all classes at
once and show that the decomposition method proposed in [12] can be applied.
Another method which also considers all variables together is by Crammer and
Singer [7], which will be discussed in Section IV. Numerical experiments are in
Section V where we show that “one-against-one” and DAG methods are more
suitable for practical use than the other methods. Results also show that for
large problems the method proposed in [25], [27] by considering all variables at
once generally needs fewer support vectors. Finally we have some discussions and

conclusions in Section VI.

II. ONE-AGAINST-ALL, ONE-AGAINST-ONE, AND DAGSVM METHODS

The earliest used implementation for SVM multi-class classification is probably
the one-against-all method (for example, [2]). It constructs £ SVM models where
k is the number of classes. The ith SVM is trained with all of the examples in
the ith class with positive labels, and all other examples with negative labels.
Thus given [ training data (x1,41),--., (21, ), where z; € R"i = 1,...,l and



y; € {1,...,k} is the class of z;, the ith SVM solves the following problem:
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where the training data x; are mapped to a higher dimensional space by the
function ¢ and C' is the penalty parameter.

Minimizing 1 (w’)?w" means that we would like to maximize 2/||w’||, the margin
between two groups of data. When data are not linear separable, there is a penalty
term C 22:1 5;- which can reduce the number of training errors. The basic concept
behind SVM is to search for a balance between the regularization term 3 (w*)”w?
and the training errors.

After solving (1), there are k decision functions:

(w')"¢(z) + b,

(w*)To(x) + b
We say z is in the class which has the largest value of the decision function:
class of z = argmax,_; _,((w")"¢(z) + V). (2)

Practically we solve the dual problem of (1) whose number of variables is the
same as the number of data in (1). Hence k [-variable quadratic programming
problems are solved.

Another major method is called the one-against-one method. It was introduced
in [15], and the first use of this strategy on SVM was in [9], [16]. This method
constructs k(k—1)/2 classifiers where each one is trained on data from two classes.
For training data from the sth and the jth classes, we solve the following binary
classification problem:

1
ol @028
w)T¢(2) + b7 2 1-¢, ify, =1, (3)
w) T p(ze) + 07 < -1+ &7, if y, = j,
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There are different methods for doing the future testing after all k£(k — 1)/2 clas-
sifiers are constructed. After some tests, we decide to use the following voting
strategy suggested in [9]: if sign((w”)T¢(x) + b7)) says z is in the sth class, then
the vote for the ith class is added by one. Otherwise, the jth is increased by
one. Then we predict x is in the class with the largest vote. The voting approach
described above is also called the “Max Wins” strategy. In case that two classes
have identical votes, thought it may not be a good strategy, now we simply select
the one with the smaller index.

Practically we solve the dual of (3) whose number of variables is the same as
the number of data in two classes. Hence if in average each class has [/k data
points, we have to solve k(k — 1)/2 quadratic programming problems where each
of them has about 2[/k variables.

The third algorithm discussed here is the Directed Acyclic Graph Support Vec-
tor Machines (DAGSVM) proposed in [23]. Its training phase is the same as the
one-against-one method by solving k(k — 1)/2 binary SVMs. However, in the
testing phase, it uses a rooted binary directed acyclic graph which has k(k —1)/2
internal nodes and k leaves. Each node is a binary SVM of 7th and jth classes.
Given a test sample zx, starting at the root node, the binary decision function is
evaluated. Then it moves to either left or right depending on the output value.
Therefore, we go through a path before reaching a leaf node which indicates the
predicted class.

An advantage of using a DAG is that [23] some analysis of generalization can
be established. There are still no similar theoretical results for one-against-all
and one-against-one methods yet. In addition, its testing time is less than the
one-against-one method.

We have implemented all three methods by modifying our SVM software LIBSVM
[4].

III. A METHOD BY CONSIDERING ALL DATA AT ONCE AND A
DECOMPOSITION IMPLEMENTATION

In [25], [27], an approach for multi-class problems by solving one single optimiza-
tion problem was proposed. The idea is similar to the one-against-all approach. It
constructs k two-class rules where the mth function w? ¢(z) + b separates training

vectors of the class m from the other vectors. Hence there are k£ decision functions



but all are obtained by solving one problem. The formulation is as follows:

k l
. 1
PIRIE) DTAINNC) 9 prcs
w, af m=1 i=1 m#yl

wy,d(w:) + by, > whd (i) + b +2 — &7, (4)
Em>0i=1,...,0, me{l,..., k \y.

Then the decision function is
argmax,,_, . (wn () + bm),

which is the same as (2) of the one-against-all method. Like binary SVM, it is
easier to solve the dual problem here. Following [27], the dual formulation of (4)

is

) 1, -1
i (A, — Yol + 5 Y arap)i -2 Yol
m m i,m

inj
l l
o= drAm=1,... k, (5a)
=1 =1
0<a*<C, off =0, (5b)
b 1 ify =y,
A; = Z of", cff = ’ (5¢)
m=1 0 ify; #yj,

i=1,...,L,m=1,...k,

where K; ; = ¢(z;)T¢(x;). Then

l

Wy = Z(szAi —aMé(x;),m=1,...,k (6)

i=1
and the decision function is

l
argmax,, (3 (e A — o) K (2, 7) + bu).

=1

Next we explain that (4) is equivalent to two formulations where one is from



[11]:

k l
1

min §Z||wm wo||2+02 Z &"

wibg o<m i=1 m#y;
w; (@;) + by, > wh ¢(;) + by, + 2 — €, (7a)

k

D wm =0, (7b)
m=1

' >0,i=1,...,1, me {1,... . k}\y,
and the other is from [3]:

k k I
min%Zme—onQnLZernwm—kCz Zfzm (8)
m=1

o<m i=1 m#£y;

with the same constraints of (4).

For the optimal solution of (4), from (6) and (5c), we have

m=1 m=1 ¢

(cf"Ai — i) p(zi) = Z(Ai — Z o™ e(z;) = 0.

l l k
=1 i=1 m=1

Hence adding (7b) to (4) does not affect the optimal solution set. Then (7b)

implies

k
Z lwo — winll* = & Z Wiy Wi
o<m m=1
so (4) and (7) have the same optimal solution set. Similar arguments can prove
the relation between (4) and (8) as well. The equivalence of these formulations
was first discussed in [11].

Note that (5) has kl variables where [ of them are always zero. Hence we can also
say it has (k — 1) variables. Unfortunately (5) was considered as an impractical
formula due to this huge amount of variables. Hence in [27] only small problems
are tested. In the rest of this section we discuss a possible implementation for
solving larger problems.

Remember that when solving binary SVM, a main difficulty is on the density of
the kernel matrix as in general K; ; is not zero. Thus currently the decomposition
method is the major method to solve binary support vector machines [21], [13],
[22], [24]. It is an iterative process where in each iteration the index set of variables

are separated to two sets B and N, where B is the working set. Then in that
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iteration variables corresponding to N are fixed while a sub-problem on variables
corresponding to B is minimized. The size of B and the selection of its contents
are both important issues on designing a decomposition method. For example,
the Sequential Minimal Optimization (SMO) by Platt [22] considers only two
variables in each iteration. Then in each iteration of the decomposition method the
sub-problem on two variables can be analytically solved. Hence no optimization
software is needed.

However, such working set selections in the binary case may not work here for
the dual problem (5). Instead of only one linear constraint in the dual of (1),
now in (ba) we have k linear constraints. Thus we can think (5a) as a system
of k linear equations with kl variables. Note that the size of the working set is
the number of variables we would like to change in one iteration. If it is less
than &, then (5a) may be an over-determined linear system with more equations
than variables so the solution of the decomposition algorithm cannot be moved.
Therefore, in general we have to select more than & variables in the working set
of each iteration. However, this is still not an easy task as bounded constraints
(5b) have to be considered as well and we would like to have a systematic way
which ensures that the selection leads to the decrease of the objective function.
Unfortunately so far we have not found out effective ways of doing it.

Therefore, instead of working on (4), we consider the following problem by
adding an:l b2, to the objective function:

k l
uy p [ m] [ O e

m=1 m i=1 m#y;

¢($z) ¢($z) m
[wr b,] > [wl b, +2-¢, ©)
1 1
Er>0,i=1,...,0,me{l,..., k}\y.
Then in the dual problem £ linear constraints are removed:
: L m . Yi 1 m,m m
,J m m i,m

5 (10)



The decision function becomes

f(x) = argmax,; (D (cl"A; — of') (K (2, 7) + 1))

i=1
The idea of using bounded formulations for binary classification was first proposed
in [10], [18]. For two-class problems, a detailed numerical study showing that the
bounded formulation can achieve similar accuracy as the standard SVM is in [12],
where the software BSVM was proposed. Without linear constraints, we hope that
the problem of selecting the working set in the decomposition method becomes
easier. Of course it is not clear yet if the accuracy will be affected as now k b2
terms are added to the objective function. We will see the results in the experiment
section.

For (10), the same decomposition method as in [12] can be applied. We rewrite

(10) as the following general form

1

min  f(a) = iaTQa— 2el

o]
0<a"<C,af =0, (11)
i=1,...,Lm=1,... k

where e is a kl by 1 vector and @ is a kl by kl matrix. Then in each iteration, the

sub-problem is as follows:

) 1
min §C¥£QBBO[B — (263 — QBN()[?V)T&B

ap
OS(O!B)iSC,izl,...,q, (12)

where [8§§ gf\’,x } is a permutation of the matrix () and ¢ is the size of the working

set. Note that as o = 0,V are fixed variables, we do not select them into the
working set.
Assume that « is the solution of the current iteration and g is the size of the

working set. We use the following working set selection of BSVM:
Let r be the number of free variables at « and calculate
min (V f(«),0) if o = 0,
vi" = — |V () if 0 <o <C,
—max (Vf(a)0) ifo"=C.

Select indices of the largest min(g/2,r) elements in v, where o is free



(ie. 0 < " < C) into B

Select the (¢ — min(q/2,7)) smallest elements in v into B.

The main idea of this working set selection is from Zoutendijk’s feasible-direction
method [28]:

min  Vf(a)'d
—1<d<1, (13)
>0, ife;* =0, d" <0, if )" =C.

If d is an optimal solution of (13), then d* must be +1 or —1. The vector v
defined above actually has v]" = V f(«)"d}". Thus selecting the smallest elements
in v is like selecting components with the best steepest descent direction. This
has been used in some early implementations of the decomposition methods (e.g.
[13]). However, it was pointed out in [12] that such a selection of the working
set may lead to very slow convergence on some difficult problems. With some
theoretical and experimental analyses, in [12] the authors proposed to include some
of the largest elements of v whose corresponding /" are free (i.e. 0 < of* < C).
Therefore, if g is the size of the working set, we pick ¢/2 indices from the smallest
elements of v and the other ¢/2 from the largest of v whose corresponding o™ are
free.

The major difficulty for the implementation lies in calculating elements of ()
which are mainly accessed as Qpp and Qpy in (12). As @ in (5) has a very
complicated form, it is essential to avoid some possible computational overheads.

More importantly, the form in (10) is not symmetric to indices 7 and j. That

is,
1 Yi m . Yi 1 m_m
1, 1
7é (icf]AJAZ — ZOZ;’LCM?J + § ZCK;”OK:”)KJ’Z
m m

This increases the difficulty of writing down the explicit form of ). As any
quadratic formulation can be written as a symmetric form, we must reformulate
(10). This will be explained in (15).
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Note that as

504TQ04
= Z ciiAiA; — Zam ol + Za (K;j;+1) (14a)
2%
k l l
_ % Z(Z(szAZ —a xz) ) (Z mA _ a ¢(z;)}> (14b)
m=1 i=1 j=1

for any nonzero vector v € R* x R!,

vIQu
ko1 k . k

= (@Y v e [#69]) (e Yo v = [497]) 0.
m=1 =1 o=1 j=1 o=1

Hence @ is positive semi-definite and (10) is a convex optimization problem. Here
(14a) to (14b) is by direct calculation. It is easy to see how the first and third
terms of « in (14a) are obtained from (14b). For the second term, we have
VD DIES WRES 9 oS
m,z ] Z,J

Next we discuss the explicit form of (). In partlcular, we will show what a col-

umn of @) is. We consider the vector « as the following form [, ... ,af, ... ,a¥, ...
In addition, for o, ..., o], we assume that if y; < y;, " is in a position before
a™

J
In (10), the quadratic terms compose of three groups. First we have

CZ]/ZAZA]
. (an:l azm)(an:I 042”) if yi =y,
0 if yi # y;-

Clearly this part forms a symmetric matrix as follows

Ky, Ky

K ), (k) K k), (k)

k

aal

]T
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where l_((m), (m) includes all elements K; j = K j+1 with y; = y; = m. This implies
) = 1,...,k
will have K (y;), contributed by this part. We use af, ) to represent {af | y; = y]}
and K, ; for {K; | y; = y;}.

For the third term, 37, . af*af¢(z;)" ¢(z;), clearly it forms the following sym-

that for the ((s—1)I+j)th column, row indices corresponding to of

metric matrix

K

K
Similarly we say that at the ((s — 1)l + 7)th column, row indices corresponding to
o3,...,0f will include Klj, .. R'l ;
The most complicated one is the second part —2 . . jm @ giK}’j as it is not a
symmetric form. To make it symmetric we use the property that any quadratic
term zy = sxy + sy
23 oK

).77

= ) (of'a¥K;;+ o¥a]'K; ) (15)
1,J5m
= Z a le” + Z ay]amK”.
5‘7, 7]5
Hence for the ((s—1){+ j)th column, elements corresponding to af,),r =1,... ,k

and o’ =1,...,l will have —K(;); and —K; ;,i = 1,... [, respectively.
In summary, the ((s — 1)l + j)th column of @ can be obtained as follows:
1. Obtain the column vector K; ;,4 = 1,... ,l. Initialize the ((s—1)l+7)th column

as the a kl by one zero vector.

2. For elements corresponding to of, ..., a}, add Kl,ja .. ,I_{l,j (from the third
part)

3. For elements corresponding to o', ... ,«;’, minus K, ..., K;; (from the sec-
ond part)

4. For elements corresponding to each of a%yj), cee aé“yj), add K, (y;)j (from the first
part)

5. For elements corresponding to each of a(ls), e ,ozfs), minus I_((S),]- (from the

second part)
Thus @ in (12) is a dense but not a fully dense matrix. Its number of nonzero

elements is about O(I?k). For practical implementations, we compute and cache
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K; ; instead of elements in (). The reduction of the cached matrix from kil to !
further improve the training time of this algorithm.

There are different implementations of the above procedure. As the situation
may vary for different computational environment, here we do not get into further
details.

We have implemented this method as an extension of BSVM and LIBSVM which
will be used for the experiments in Section V. In addition, the software is available

at http://www.csie.ntu.edu.tw/“cjlin/bsvm

IV. METHOD BY CRAMMER AND SINGER

In [7], Crammer and Singer proposed an approach for multi-class problems
by solving a single optimization problem. We will also give a decomposition

implementation here. Basically [7] solves the following primal problem:

k !
1
min 3 Z wh Wy, +C Z &
wm:fz m=1 i—1
wgi(ﬁ(aci) —who(z;) >el —&i=1,...,1, (16)

m —
where " =1 — 4, ,, and

1 ify, =m,
Oyim
0 ify; #m.

Then the decision function is

AIGMAX,yy Wy ().

The main difference from (4) is that (16) uses only [ slack variables &;,i =
1,...,l. That is, instead of using £/ as the gap between each two decision planes,

here the maximum of £ such numbers is considered:

& = (max(wl6(z:) + ") — who(w)):

where (-); = max(-,0). In addition, (16) does not contain coefficients b;,7i =
1,...,l. Note that here we do not have to explicitly write down constraints

& > 0 as when y; =m, e/ = 0 so (16) becomes

which is exactly & > 0.
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The dual problem of (16) is

l !
min  f(a) = % Z Y Kijala;+ > ale

i=1 j=1 i=1

k
dor=0i=1,...,1, (17a)
m=1
o <0, if y; # m, (17b)

O,/,LmSC, lfyz:m:
i=1,... . lm=1,... .k

where K ; = ¢(x;)  ¢(z;),

_ 1 k1T _ 1 k1T
@ =lo;,...,q;], and & = [e;,... ,€;
Then
I
— m
i=1
: — [l k 1 k1T — [l k 1 kT
If we write & = [a4, ... ,08,... ,0q,...,af|" ande = [e],... ,€f,... ,¢e/,...,€ef]",

then the dual objective function can be written as
1 7 T
50 (K@ Da+e a,

where [ is an k£ by k identity matrix and ® is the Kronecker product. Since
K is positive semi-definite, K ® I, the Hessian of the dual objective function is
also positive semi-definite. This is another way to explain that (17) is a convex
optimization problem.

The decision function is
1
argmax,,_, Y of'K(z;,z).
i=1

The main difference between linear constraints (5a) and (17a) is that (5a) has
k equations while (17a) has [. It is interesting that they come from the KKT
condition on different primal variables. (5a) is due to the unconstrained variables
bi,..., b, in (4) while (17a) is from the unconstrained variables &i,...,&. In
addition, (17a) is much simpler than (5a) as each of its equations involves exactly
k variables. In a sense we can say that (17a) contains [ independent equations.

Because of this advantage, unlike (5a) where we have to remove linear constraints
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and use (9), here it is easier to directly conduct working set selections for the
decomposition method.
In [7] the authors proposed to choose k variables associated with the same z;

1 k

in the working set. That is, ¢, ... ,; are elements of the working set where the

selection of the index ¢ will be discussed in (20). Then the sub-problem is

1
min —A&iT&i + Bla,

2
k
Z o' =0, (18)
m=1
;"

where
A= K,"z' and B = éi + ZK",'@]',
J#i
In addition, C_’;?,m =1,...,kis a k by 1 vector with all elements zero except

that the (y;)th component is C.

The main reason of this setting is that (18) is a very simple problem. In [7], an
O(klog k) algorithm was proposed for (18) while in [8], a simple iterative approach
was used. Here we use the first method. In addition, it is easier to systematically
calculate A and B so many complicated derivations in the previous section are
avoided.

Note that the gradient of the dual objective function is

! 1 1]
Zj:l Kl:jaj + el

! k k
Zj:l Kl,jaj + €7
l 1 1
Zj:l Ko + ey

l k k
Zj:l Kzajaj + €2

Then B, a k by 1 vector, can be calculated as follows by the information of the

gradient:

9£(0) _ o m_ 0(0)

=
dal" o oo™

B, = —Ao",m=1,... k.
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Therefore, during iterations it is essential to always keep the gradient updated.
k

This is done after new o}, ..., are obtained by (18) and O(kl) operations are
needed.

Next we discuss the selection of the working set and the stopping condition of
the decomposition method. The KKT condition requires that there are by, ... , b
and A} > 0,...,AF > 0such that foralli=1,... ,Im=1,... k,

l
Y Ko+ e — b = -\ and X"(Cpr — o) = 0.
7j=1

(2
They are equivalent to that forall:=1,... ,Im=1,... k,
!
ZKi,ja;" +e—b; =0 ifo" <O,
j=1
<0 ifo= C_’;?.

We can rewrite this as

l l

max K; o'+ ¢€") < b; < min K; ;" + el). 19

arﬁéﬂ(; Y had] 2 ) — Y1 = a;n<é$(; Y ey ] ) ( )

Then during iterations, we select the next working set {c},... ,af} with i from
! !

argmax;( ma K, ;o +¢€") — min K; o5 +ef")). 20

g Xz(arsé]n;(jz:; %] 1 ) a?’<é;’;(j2:; ©J1g 7 )) ( )

In other words, among the [ k-component groups of variables, we select the on
with the largest violation of the KK'T condition. For binary SVM, choosing in-
dices which most violate the KKT condition has been a common strategy (e.g.
[4]) though here instead we choose a whole group at once. Then for variables
{a},...,aF} which are selected, they do not satisfy the KKT condition of the
sub-problem (18) so solving (18) will guarantee the strict decrease on the objec-
tive function of the dual problem.

Following (19) the stopping criterion can be

I !
max( aé(m(z K;jof' +€f") — min (Z Kol +¢e")) <e, (21)

m -
m m ™m
? a*< i oy <Ci‘li |

where € is the stopping tolerance.
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The convergence of the above decomposition method has been proved in [17].
In addition, [17] shows that the limit of

l
min (Z K;jof" + "))

a{"<C§T; =1

l
max( max K; ;o +e) —
(e (0 Kol 47
goes to zero as the number of iterations goes to infinity. Hence in a finite number
of iterations, the decomposition method stops as (21) is satisfied. The implemen-

tation is now part of BSVM 2.0 which is also publicly available to users.

V. NUMERICAL EXPERIMENTS
A. Data and Implementation

In this section we present experimental results on several problems from the
Statlog collection [20] and the UCI Repository of machine learning databases [1].
From UCI Repository we choose the following datasets: iris, wine, glass, and vowel.
Those problems had already been tested in [27]. From Statlog collection we choose
all multi-class datasets: vehicle, segment, dna, satimage, letter, and shuttle. Note
that except problem dna we scale all training data to be in [-1, 1]. Then test
data are adjusted using the same linear transformation. For the problem dna, we
do not scale its binary attributes. We give problem statistics in Table VI.1. For
some of these problems test sets are available. Note that for problems glass and
satimage, there is one missing class. That is, in the original application there is
one more class but in the data set no examples are with this class. In the last
column we also give the best test rate listed in statlog homepage. Note that these
best rates were obtained by four different learning methods.

The most important criterion for evaluating the performance of these methods
is their accuracy rate. However, it is unfair to use only one parameter set and
then compare these five methods. Practically for any method people find the best
parameters by performing the model selection. This is conducted on the training
data where the test data are assumed unknown. Then the best parameter set
is used for constructing the model for future testing. Note that details of how
we conduct the model selection will be discussed later in this section. To reduce
the search space of parameter sets, here we train all datasets only with the RBF
kernel K(z;,z;) = e~lei==il’ I addition, for methods solving several binary
SVMs (one-against-one, one-against-all, and DAG), for each model we consider

that C' and v of all binary problems are the same. Note that this issue does



TABLE V.1

PROBLEM STATISTICS

Problem | #training data | #testing data | #class | Fattributes | statlog rate
iris 150 0 3 4
wine 178 0 3 13
glass 214 0 6 13
vowel 528 0 11 10
vehicle 846 0 4 18
segment 2310 0 7 19
dna 2000 1186 3 180 95.9
satimage 4435 2000 6 36 90.6
letter 15000 5000 26 16 93.6
shuttle 43500 14500 7 9 99.99
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not arise for two all-together methods as each model corresponds to only one
optimization problem.

We use similar stopping criteria for all methods. For each problem we stop the
optimization algorithm if the KKT violation is less than 10~2. To be more precise,
each dual problem of the one-against-one and one-against-all approaches has the

following general form:

min  f(«)
y o =0,
0 S o S Ca

where y; = +1. Using a similar derivation of the stopping criterion (21) of the

method by Crammer and Singer, we have

max( max  —Vf(o), max V/(a))
< mi : ) . B . 3
- mln(ai<l’cr'};?:—l Vi(a)i, aii%gj:l Vf(a)) +10 (22)

For (10) of the all-together approach, (22) becomes even simpler as there are no
vector y. Unfortunately though these stopping criteria are nearly the same, they
are not fully comparable due to different size of dual problems in these approaches.
We will elaborate more on this issue in Section VI. Note that for problems letter
and shuttle, a relaxed tolerance 0.1 is used for the method by Crammer and Singer.
as otherwise it takes too much training time. More information on the stopping

criteria of the decomposition method can be found in [17].
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The computational experiments for this section were done on a Pentium III-500
with 384MB RAM using the gcc compiler. For each optimization problem (either
binary SVMs or the all-together approaches), we allocate 256 MB memory as the
cache for storing recently used kernel elements. Each element of ();; stored in the
cache is in double precision. For the same size of the cache, if the single precision
is used, the number of elements which can be stored in the cache is doubled. We
have both implementations but here only the double-precision one is used.

While implementing these approaches using the decomposition method, we can
use a shrinking technique for reducing the training time. To be more precise, if
most variables are finally at bounds, the shrinking technique reduces the size of
the working problem by considering only free variables. We have implemented
the shrinking technique on all five methods. For the three methods based on
binary classifiers, details are in [4, Section 4]. For two all-together methods,
the implementation is more sophisticated. This is a disadvantage of all-together
methods. Though they consider only one optimization problem, this problem is

more complicated for practical implementations.

B. Results and Discussions

For each problem, we estimate the generalized accuracy using different ker-
nel parameters v and cost parameters C: v = [2%,23,22 ... 2719 and C =
[212 211 210" '272]. Therefore, for each problem we try 15 x 15 = 225 combi-
nations. We use two criteria to estimate the generalized accuracy. For datasets
dna, satimage, letter, and shuttle where both training and testing sets are available,
for each pair of (C,~), the validation performance is measured by training 70%
of the training set and testing the other 30% of the training set. Then we train
the whole training set using the pair of (C,~) that achieves the best validation
rate and predict the test set. The resulting accuracy is presented in the “rate”
column of Table VI.2. Note that if several (C,+) have the same accuracy in the
validation stage, we apply all of them to the test data and report the highest rate.
For the other six smaller datasets where test data may not be available, we simply
conduct a 10-fold cross-validation on the whole training data and report the best
cross-validation rate.

Table VI.2 presents the result of comparing five methods. We present the
optimal parameters (C, ) and the corresponding accuracy rates. Note that the
“C&S” column means the method by Crammer and Singer. It can be seen that

optimal parameters (C,7) are in various ranges for different problems so it is



TABLE V.2

A COMPARISON USING THE RBF KERNEL (BEST RATES BOLD-FACED)
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One-against-one DAG One-against-all [25], [27] C&S
Problem| (C,7) ratg  (C.,%) ratsl (C,7) ratg  (C,y) ratg  (C,7) rate
iris (2'2,27%)  97.333(2'%,27%)  96.667 (2°,273)  96.667(2'%,27%) 97.333(2'%,27") 97.333
wine  [(27,27'%) 99.438 (2,27%)  98.876 (27,27%)  98.876/ (2°,27%)  98.876 (2',27%)  98.876
glass  |(2',272)  71.495(2'2,27%) 73.832(2',27%) 71963 (2°,27%) 71.028 (2%, 2') 71.963
vowel (24,2 99.053 (22,2?) 98.674 (2%,2') 98.485 (2%,2°) 98.48;5 (2',2%) 98.674
vehicle | (29,27%)  86.643(2'',27%)  86.052(2'',27%) 87.470(2'°,27%)  86.998 (2°,27%)  86.761
segment| (2°,2°)  97.403(2'',273%)  97.359 (27,2°) 97.532 (2°,2°) 97.576 (2°,2%) 97.316
dna (23,27%)  95.447 (23,27%)  95.447 (2%,27°%)  95.784 (2*,27°%)  95.616 (2',27°) 95.869
satimage  (2*,2°) 91.3 (24,29 91.25 (2%,2Y) 91.7 (23,29 91.25 (2%,2%)  92.35
letter (24,22)  97.98 (2%,2?) 97.98 (22,2%) 97.88 (21,2%) 97.76 (23,2%) 97.68
shuttle | (2'%,2%) 99.924 (2'1,2%)  99.924 (2°,2%)  99.910 (2°,2%) 99.910 (2'%,2%) 99.938
TABLE V.3

TRAINING TIME, TESTING TIME, AND NUMBER OF SUPPORT VECTORS (TIME IN SECONDS;

BEST TRAINING AND TEST TIME BOLD-FACED; LEAST NUMBER OF SVs ITALICIZED)

One-against-one DAG One-against-all [25], [27] C&S

Problem| training #SVs | training #SVs | training #SVs | training #SVs | training #SVs
testing testing testing testing testing

iris 0.04 16.9 0.04 15.6 0.10 16.0 0.15 16.2 16.84 27.8

wine 0.12 56.3 0.13 56.5 0.20 29.2 0.28 54.5 0.39 41.6

glass 2.42 112.5 | 2.85 114.2 10.00 129.0 | 7.94 124.1 7.60 143.3

vowel 2.63 345.3 | 3.98 365.1 | 9.28 392.6 | 14.05 279.4 | 20.54 391.0

vehicle | 19.73 3024 | 35.18 293.1 | 142,50 343.0 | 88.61 264.2 | 1141.76 264.9

segment| 17.10 4424 | 23.25 266.8 | 68.85 446.3 | 66.43 358.2 | 192.47  970.3

dna 10.60 967 10.74 967 23.47 1152 13.5 951 16.27 945
6.91 6.30 8.43 6.91 6.39

satimage 24.85 1611 25.1 1611 136.42 2170 48.21 1426 89.58 2670
13.23 12.67 19.22 11.89 23.61

letter 298.08 8931 298.62 8931 1831.80 10129 | 8786.20 7627 1227.12% 6374
126.10 92.8 146.43 142.75 110.39

shuttle | 170.45 301 168.87 301 202.96 330 237.80 202 2205.78* 198
6.99 5.09 5.99 4.64 4.26

*: stopping tolerance € = 0.1 is used.
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essential to test so many parameter sets. We also observe that their accuracy is
very similar. That is, no one is statistically better than the others. Comparing to
earlier results listed in Statlog (see the last column of Table VI.1), the accuracy
obtained by SVM is competitive or even better. For example, among the four
problems dna to shuttle, the one-against-one approach obtains better accuracy on
satimage and letter. For the other two problems, the accuracy is also close to that
in Table VI.1.

We also report the training time, testing time, and the number of unique support
vectors in Table VI.3. Note that they are results when solving the optimal model.
For small problems there are no testing time as we conduct cross validation.
Here we say “unique” support vectors because a training data may correspond to
different nonzero dual variables. For example, for the one-against-one and one-
against-all approaches, one training data may be a support vector in different
binary classifiers. For the all-together methods, there are k[ variables so one data
may associate with different nonzero dual variables. Here we report only the
number of training data which corresponds to at least one nonzero dual variable.
We will explain later that this is the main factor which affects the testing time.
Note that the number of support vectors of the first six problems are not integers.
This is because they are the average of the 10-fold cross-validation.

TABLE V.4

A COMPARISON USING THE LINEAR KERNEL (BEST RATES BOLD—FACED)

One-against-one DAG One-against-all [25], [27] C&S
Problem| C rate C rate C rate C rate C rate
iris 24 97.333 | 2® 97.333 | 212 96.000 | 2° 97.333 | 2° 87.333
wine 272 99.438 | 272 98.315 | 22 98.876 | 27%  98.876 | 27! 99.438
glass 28 66.355 | 2*  63.551 | 2° 58.879 | 2°  65.421 | 25 62.617
vowel 28 82.954 | 26  81.439 | 2" 50.000 | 2%  67.424 | 25 63.068
vehicle 28 80.615 | 2° 80.851 | 2'2 78.132 | 21°  80.142 | 2* 79.669
segment| 2'? 96.017 | 2''  95.844 | 22 93.160 | 2% 95454 | 272 92.165

For the training time, one-against-one and DAG methods are the best. In fact
the two methods have the same training procedure. Though we have to train as
many as k(k — 1)/2 classifiers, as each problem is smaller (only data from two
classes), the total training time is still less. Note that in Table V1.3 the training
time of one-against-one and DAG methods may be quite different for the same

problem (e.g. vehicle). This is due to the difference on the optimal parameter
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sets.

Although we improve the method from [25], [27] with efforts in Section III, its
training speed remains slow. The convergence speed of the method by Crammer
and Singer is also not good. Especially for some problems (iris, vehicle, and shuttle)
its training time is huge. For these problems we note that the optimal parameter
of C is quite large. The experience in [12] shows that if the working set selection
is not good, the convergence of the decomposition method may be slow when
using a large C. Thus the difficulty might be on the working set selection. As in
each iteration only one of the [ equalities is involved, there may not be enough
interactions among these [ groups of variables.

Regarding the testing time, though the decision function is more complicated
than the binary case, our experimental results indicate that in general the testing
time is still dominated by the kernel evaluations. Note that to save testing time,
we always calculate and store all K (z;, z) first, where x; is any “unique” support
vector and z is the test data. Then this K(z;,z) may be used in several places
of the decision function. We observe that if £ is small (< 10), kernel evaluations
take more than 90% of the testing time. Therefore, we can say that in general the
testing time is proportional to the number of “unique” support vectors.

We also observe that between the one-against-one and DAG methods, DAG is
really a little faster on the testing time.

We then discuss the number of support vectors. We can see that for larger
problems, the method from [25], [27] returns fewer support vectors than all three
binary-based approaches. Note that we generally observe that for the same pa-
rameter set, it needs fewer support vectors. This is consistent with the results in
[27]. Here we do not really have such a comparison as the optimal parameters
vary for all approaches. Especially for small problems their optimal parameters
are very different. However, for large problems their optimal parameters are simi-
lar so in Table V1.2 the “#SVs” column of the method from [25], [27] really shows
smaller numbers. Therefore, if the testing time is very important, this method
can be an option. On the other hand, we cannot draw any conclusions about the
method by Crammer and Singer. Sometimes it needs very few support vectors
but sometimes the number is huge.

We would like to note that for the problem dna, several parameters get the best
result during the validation stage. Then when applying them to the test data,
some of them have the same accuracy again. In Table VI.2 we present only the

result which has the smallest number of support vectors.
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Overall, except the training time, other factors are very similar for these ap-
proaches. Thus we suggest that one-against-one and DAG approaches are more
suitable for practical use.

To have more complete analyses, we test these methods by using the linear
kernel K (z;,z;) = x] z;. Results are in Table VI.4. Due to the limit of compu-
tational time, we report only small problems. Now the only parameter is C' so
we test 15 different C’s and report the best rate. Comparing to Table V1.2, the
difference on the best rates is apparent. The one-against-all method returns the
worst accuracy for some problems. Overall one-against-one and DAG still perform
well. The comparison on linear and nonlinear kernels also reveals the necessity of
using nonlinear kernels in some situations. The observation that overall the RBF
kernel produces better accuracy is important as otherwise we do not even need
to study the decomposition methods which is specially designed for the nonlinear
case. There are already effective methods to solve very large problems with the
linear kernel.

Finally we would like to draw some remarks about the implementation of these
methods. The training time of the one-against-all method can be further improved
as now for each parameter set, k£ binary problems are treated independently. That
is, kernel elements used when solving one binary problem are not stored and passed
to other binary problems though they have the same kernel matrix. Hence the
same kernel element may be calculated several times. However, we expect that
even with such improvements it still cannot compete with one-against-one and
DAG on the training time. For all other approaches, caches have been imple-
mented so that all problems involved in one model can share them. On the other
hand, for all approaches, now different models (i.e. different parameter sets) are
fully independent. There are no caches for passing kernel elements from one model

to another.

VI. DiscussioNs AND CONCLUSIONS

We note that a difference between all-together methods is that the method by
Crammer and Singer does not include bias terms by, ... ,b,. We are wondering

whether this may affect the training time. Here we give a brief discussion on this
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issue. If by, ..., b are added, (16) becomes

k
min 52 wm—f-CZf,
(w Z d(xi) + by,) — (wmgb(:vi) +by) e —&,i=1,...,1, (23)

Then from the KKT condition the dual has some additional equalities:

Then again the same difficulty on the working set selection for (5) happens again

so we may have to add i Z to the objective function of (23). The dual

—lm

problem hence is

l

l
min  f(a) = %ZZ (Kij+1)a, Oz]—i-Za €;
i=1 j=1 =1
k
Za;”:(),
m:l

O,/,LmSC, lfyz:m,
i=1,...,,m=1,... k,

which can be solved by the same decomposition method described in Section IV.
Then

so the decision function is

argmax,, w. ¢(z) + b = argmax,), Z o (K (zi,x) + 1).
i=1
We modify the code for (24) and by using the optimal parameters listed in
the last column of Table VI.3, a comparison on the number of iterations between
solving (17) and (24) is in Table VI.5. We provide only results of the four large
problems. It can be clearly seen that after adding the bias term, the performance
is not better. It is not clear yet why the number of iterations is nearly doubled but

this is not surprising as in [12] we have demonstrated that for binary SVM, with or
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without 4% in the objective function, the performance of the same decomposition
method can be quite different. Overall we realize that the working set selection

(20) may not be very good to have fast convergence for (16).
TABLE VL5

NUMBER OF ITERATIONS: A COMPARISON ON SOLVING (17) AND (24)

Problem | Eq. (17) Eq. (24)
dna 8653 15475
satimage 13109 27751
letter 16341 26424
shuttle 163394 286734

The second issue which will be discussed here is about the stopping criteria.
Though we use stopping criteria from the same derivation, they are affected by
the problem size. That is, the smaller the dual problem is, fewer variables are
involved in the calculation of V f(«a); of (22). Therefore, in some sense approaches
like one-against-one which use smaller dual problems take advantages (or say they
stop earlier). A possible remedy is to divide the left-hand-side of (22) by the size
of the dual problem. More investigation are needed for this issue. However,
even with such differences, our conclusion that all-together methods take more
training time should remain as from Table VI.3 we can see for both approaches
on some problems their training time is much longer. For example, the method
by Crammer and Singer solve a kl-variable problem and for problems letter and
shuttle, we relax the stopping tolerance to 0.1. This is like that we divide the left-
hand-side of (21) by 100 which is grater then £, the number of classes. However,
its training time still cannot compete with that of the one-against-all approach
which solves dual problems with [ variables.

In conclusion, we have discussed decomposition implementations for two all-
together methods and compared them with three methods based on several bi-
nary classifiers: one-against-one, one-against-all and DAG. Experiments on large
problems show that one-against-one method and DAG may be more suitable for
practical use. A future work is to test data with a very large number of classes.
Especially people have suspected that there may have more differences among

these methods if the data set has few points in many classes [26].
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